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4. APPENDIX
REFERENCES

Insects in free flight were filmed at 5000 frames per second to determine the motion
of their wings and bodies. General comments are offered on flight behaviour and
manoeuvrability. Changes in the tilt of the stroke plane with respect to the horizontal
provides kinematic control of manoeuvres, analogous to the type of control used for
helicopters.

A projection analysis technique is described that solves for the orientation of the
animal with respect to a camera-based coordinate system, giving full kinematic details
for the longitudinal wing and body axes from single-view films. The technique can
be applied to all types of flight where the wing motions are bilaterally symmetrical:
forward, backward and hovering flight, as well as properly banked turns. An analysis
of the errors of the technique is presented, and shows that the reconstructed angles
for wing position should be accurate to within 1-2° in general. Although measurement
of the angles of attack was not possible, visual estimations are given.

Only 11 film sequences show flight velocities and accelerations that are small
enough for the flight to be considered as ‘hovering’. Two sequences are presented
for a hover-fly using an inclined stroke plane, and nine sequences of hovering with
a horizontal stroke plane by another hover-fly, two crane-flies, a drone-fly, a ladybird
beetle, a honey bee, and two bumble bees. In general, oscillations in the body position
from its mean motion are within measurement error, about 1-2 9, of the wing length.
‘The amplitudes of oscillation for the body angle are only a few degrees, but the phase
relation of this oscillation to the wingbeat cycle could be determined for a few
sequences. The phase indicates that the pitching moments governing the oscillations
result from the wing lift at the ends of the wingbeat, and not from the wing drag or
inertial forces. The mean pitching moment of the wings, which determines the mean
body angle, is controlled by shifting the centre of lift over the cycle by changing the
mean positional angle of the flapping wings.

Deviations of the wing tip path from the stroke plane are never large, and no
consistent pattern could be found for the wing paths of different insects; indeed,
variations in the path were even observed for individual insects. The wing motion
is not greatly different from simple harmonic motion, but does show a general trend
towards higher accelerations and decelerations at either end of the wingbeat, with
constant velocities during the middle of half-strokes. Root mean square and cube root
mean cube angular velocities are on average about 4 and 99, lower than simple
harmonic motion. Angles of attack are nearly constant during the middle of
half-strokes, typically 35° at a position 70 %, along the wing length. The wing is twisted
along its length, with angles of attack at the wing base some 10-20° greater than at
the tip.

The wings rotate through about 110° at either end of the wingbeat during 10-20 9/,
of the cycle periqd. The mean velocity of the wing edges during rotation is similar
to the mean flapping velocity of the wing tip and greater than the flapping velocity
for more proximal wing regions, which indicates that vortex shedding during rotation
is comparable with that during flapping. The wings tend to rotate as a flat plate during
the first half of rotation, which ends just before, or at, the end of the half-stroke. The
hover-fly using an inclined stroke plane provides a notable exception to this general
pattern: pronation is delayed and overlaps the beginning of the downstroke. The wing
profile flexes along a more or less localized longitudinal axis during the second half
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of rotation, generating the ‘flip’ profile postulated by Weis-Fogh for the hover-flies.
This profile occurs to some extent for all of the insects, and is not exceptionally
pronounced for the hover-fly. By the end of rotation the wings are nearly flat again,
although a slight camber can sometimes be seen.

Weis-Fogh showed that beneficial aerodynamic interference can result when the
left and right wings come into contact during rotation at the end of the wingbeat.
His ‘fling’ mechanism creates the circulation required for wing lift on the subsequent
half-stroke, and can be seen on my films of the Large Cabbage White butterfly, a plume
moth, and the Mediterranean flour moth. However, their wings ‘peel’ apart like two
pieces of paper being separated, rather than fling open rigidly about the trailing edges.
A ‘partial fling’ was found for some insects, with the wings touching only along
posterior wing areas. A ‘near fling’ with the wings separated by a fraction of the chord
was also observed for many insects. There is a continuous spectrum for the separation
distance between the wings, in fact, and the separation can vary for a given insect
during different manoeuvres. It is suggested that these variants on Weis-Fogh’s fling
mechanism also generate circulation for wing lift, although less effectively than a
complete fling, and that changes in the separation distance may provide a fine control
over the amount of lift produced.

1. INTRODUCTION

A quantitative description of the wing motion, or kinematics, during flapping flight is necessary
for mechanical and aerodynamic analyses. Relatively few such descriptions can be found in the
literature, though, and most theoretical studies assume a sinusoidal motion of the wings by
default. With but a single exception, the most accurate and complete studies of wing kinematics
have dealt with insects tethered in wind tunnels (Weis-Fogh 1956; Jensen 1956; Nachtigall
1966; Zarnack 1972). Although the artificial constraints imposed by tethering are obviously
undesirable, the method greatly simplifies the tasks of photography and kinematic analysis. A
wind tunnel was also used by Bilo (1971, 1972) for his detailed analysis of the wing movements
of the house sparrow Passer domesticus, but the bird was induced to remain in position by
behavioural training rather than by mechanical constraint. This free flight under controlled
conditions provides the best experimental basis for observations, and has now been applied to
some insects: David (1978, 1979, 1982) has used optomotor responses to ‘tether’ Drosophila
in a wind tunnel while studying certain aspects of their flight mechanics.

The method of investigation most suitable for this study is that of Magnan (1934), which
uses high-speed cinematography to observe animals during free flight in still air. Films of
hovering, slow flight and a variety of turning and climbing manoeuvres may be obtained,
illustrating the kinematic control of flapping flight. A large filming area is required because
of the freedom allowed to the animal. I have found that a horizontal coverage about eight times
the wing length is needed to study the flight pattern; if a greater magnification is used, then
one cannot determine whether the animal is in steady flight or subject to the acceleration forces
of a manoeuvre. A multiple-view single camera system should not be used, therefore, because
the film images would then be too small for accurate measurements.

Detailed kinematics have been derived from single-view films by using either a mechanical
reconstruction of the film image (Magnan 1934), which is a tedious and inaccurate procedure,
or else the projection of the wing length when the orientation of the insect with respect to the
camera is known (Weis-Fogh 1956; Jensen 1956). For animals in free flight, the wing motion
within a camera-based coordinate system can be determined by the projected wing length, but
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the orientation of this movement with respect to the animal is apparent in only three special
cases: a front/back, side, or top/bottom view. The last case is unsatisfactory, however, because
important information about the vertical component of the flight path is lost. Except for trained
birds and bats, most animals appear regrettably ignorant of the merits of the other two cases,
and the experimenter is usually left with an unknown direction of view. A projection analysis
technique that finds this direction for single-view films is presented here, enabling full kinematic
details to be determined for the longitudinal wing and body axes. The analysis assumes that
the wings do not bend significantly along their longitudinal axes, which is approximately true
for most insects and hummingbirds, and that the flight path lies in the plane of symmetry of
the animal. Unfortunately, a quantitative analysis of the angle of attack remains intractable.

The kinematics during free flight have been measured for most of the insects of paper II.
Only those sequences that can be considered as ‘hovering’ are presented in detail here, but
some general comments are offered for the other sequences.

2. MATERIALS AND METHODS

The collection, care and identification of the insects has already been described in paper II.
I also attempted to study the Mediterranean flour moth Epkestia kuehniella Zeller (Pyralidae),
which is reared in the Departmental Field Station, but this proved unsuccessful. Films of
identified individuals could not be obtained, and the longitudinal wing bending was too great
for the assumption of the analysis technique.

2.1. Filming

Single insects were filmed inside a flight chamber, which measured 0.2 m square and 0.25 m
high. The front and rear panels of the chamber were cut from clear glass and frosted opal glass,
respectively, and slid upwards in grooves for access to the insect. The remaining construction
was in Perspex. Reference points for the film analysis were provided by two rods, 0.5 mm in
diameter, that descended from the chamber top into the upper margin of the filming area. Only
a few insects flew spontaneously within the chamber under normal room lighting and
temperature (21 °C), and so it was usually necessary to ‘persuade’ them to perform. Increasing
the chamber temperature and illumination by switching on the photographic lights for a brief
period often proved sufficient, but tapping the chamber was sometimes required in addition
to this. Tactile ‘stimulation’ with a small brush was used as a last resort on the most reluctant
insects. Not surprisingly, almost all insects would fly under these provocations. Although the
treatment may have elicited extreme behavioural responses, the resulting kinematics should
still be aerodynamically valid. Two insects, Coccinella and Chrysopa, proved incapable of
sustained flight within the confines of the chamber, and were filmed during take-off. When
placed on a vertical Perspex rod about 7 mm in diameter, they would climb to its top and,
after a brief hesitation and inspection, would almost invariably take off.

An automatic detecfor circuit switched on the camera and lights when the insect flew through
the centre of the filming area. A single light beam and photodetector monitored the trigger
point, as shown in figure 14, and this proved much easier to set up and adjust than the usual
crossed-beam detector system. A fibre optic light source was focused on the trigger point, as
was a photodiode on the side of the chamber. An insect passing through the trigger point caused
some of the light beam to be reflected towards the photodiode, resulting in an increased signal
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from it. This signal was gated by a Schmitt trigger and then used to operate the switching relays.
When a take-off was filmed, the detector was positioned such that it was triggered by the wing
movements preparatory to take-off.

The general filming set-up is illustrated in figure 15. The glass front of the chamber faced
aHyspeed 16 mm cine camera (John Hadland (P.1.), U.K.), which was operated at 5000 frames
per second : a timing light within the camera housing marked the film at 1 ms intervals. A zoom
lens provided focal lengths between 60 and 85 mm, and apertures typically ranged from f/8

(a) . .
fibre optic

photodetector

U
;

lights

chamber

camera

FiGURE 1. (a) The reflected-beam detector for the flight chamber. (4) The filming set-up. See text for explanation.

to f/11. Two 1 kW Q.I. cine lights illuminated the opal glass from behind, producing a
silhouette film image of the insect. Room lighting and reflexions of the cine lights within the
chamber showed some surface detail on the silhouette. Attempts at front-lighting were
abandoned because of intense reflexions from the wings during some parts of the wingbeat cycle.

Ilford Pan F cine film was used in the camera, and was developed for maximum film speed
and contrast in Ilford P.Q, Developer (1:9) for about 6 min at 27 °C. The negatives were used
for quantitative film analysis, but qualitative notes were taken from positive copies made on
a 16 mm continuous contact printer designed and built by G. G. Runnalls and D. J. Tyler in
this department.

2.2. Film analysis

A film analysis system was constructed around a 16 mm projection head (Model M-16C,
Vanguard Instrument Corporation, Long Island, New York) and a PDP 8/I computer
equipped with a four channel, 10 bit analogue-to-digital converter (a.d.c.). The projection head
was mounted on a framework containing a front-surface mirror, which reflected the projected
frame onto the back of a viewing screen. The magnification of this system was approximately X 42.
A cursor on the front of the screen was connected to two ten-turn potentiometers, and produced
analogue voltages for the a.d.c. proportional to the rectangular coordinates of a point on the
screen. The 10 bit a.d.c. limited the resolution to about 1.3, of the projected wing length
over the entire frame: the position of the body with respect to one reference point was measured
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to this accuracy. The gain of the analogue amplifiers was doubled for measurements of wing
and body coordinates with respect to a wing base, restricting coverage to one-quarter of the
frame area with an increase in accuracy to 0.6 %, of the wing length. A third analogue channel,
operated by push-buttons, was used to command the a.d.c. and identify the pair of coordinates
entering the PDP 8/ memory. All computer programs were written in a special laboratory
version of FOCAL — one of the standard interactive PDP 8/I languages — developed by J. H.
Davidson in the Department of Applied Mathematics and Theoretical Physics.

2
A A
034W
centre

\
(0.;00@

P
05W
ﬂy

Ficure 2. Object field for the filming geometry. The object plane is given by yz, the optical axis lies on the x axis,
and the optical centre of the lens is at . The object sphere has unit radius. The filming area for a standard
16 mm frame is bounded by y = +0.5W and z = +0.34 W, where W is the ratio of horizontal coverage to wing
length. All linear dimensions are expressed in wing lengths.

Geometrical analysis of the films mainly involves reconstructing the spatial angles of an object
wing using its projected length in a two-dimensional film image. A spherical surface describing
all possible positions of a wing tip, centred at the corresponding wing base, provides an abstract
representation of the object (figure 2). In this system, only three parameters govern the filming
geometry : the horizontal coverage W, the distance $ from the object plane to the optical centre
of the lens, and the position (O, §,, Z,) of the centre of the sphere. The linear dimensions
denoted by a ‘hat’ are non-dimensional and expressed in wing lengths. S may be calculated

§=(f/R) (1+1/M), (1)

from simple lens theory as

where fis the focal length, R is the wing length, and M is the magnification (= image wing
length/R). W is typically 8 for the films, and the minimum value of S is 40 wing lengths.

The geometrical effects of perspective have been neglected in the film analysis by invoking
two approximations: (i) all projection rays from the object are parallel to the ray passing through
the centre of the sphere, and (ii) these rays are parallel to the horizontal xy plane. The image
is therefore interpreted as an orthographic projection of an object sphere that is free to rotate
about its vertical axis. The errors introduced by these approximations (and by other sources)
are investigated in the Appendix and shown to be negligible. For §=40 and W = 8, the
reconstructed angles will be less than 1-2° in error over the entire filming area, and the assumed
horizontal plane will deviate less than 2.5° from the true horizontal. Equations to calculate
the maximum errors for different values of § and W are presented in the Appendix.

The perspective error analysis also indicates that the reference wing length should be
measured from the frame showing the maximum projected length, and not estimated from the
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optical magnification. Even so, measurement inaccuracies and a finite filming speed can
produce large errors (+ 8°) in the calculated wing position for that frame. This is unavoidable
in a projection analysis, unfortunately, and the data for such frames must be considered as
unreliable. For other frames during the wingbeat, the reconstructed angles will still be accurate
to within + 1-2° in general.

2.3. Kinematic analysis

Only one wing base can usually be seen when filming an insect from a single camera view;
the opposite base may be hidden behind the body. The three-dimensional motion of one wing
can thus be determined with respect to the filming coordinate system by using its projected length,
but this motion cannot be related immediately to the orientation of the insect body. The
coordinates of the opposite wing tip (with hidden base) may be used to define the geometrical
transformation, however, when the wing motions are bilaterally symmetrical. The analysis is
therefore restricted to flight patterns where the body travels in the plane of symmetry of the
animal: all types of forward, backward and hovering flight can be treated, as well as properly
banked turns. A large filming area is required for the observer to verify that the selected flight
sequence is truly symmetrical, and it also proves essential in choosing sequences that show
approximately steady flight.

One wing base could always be identified because of the faint surface detail recorded on the
silhouette image, and the corresponding wing tip was usually visible even when in front of the
body. Although this information eliminates the reversed-image ambiguity of the silhouette, it
was not used in the analysis procedure: the wing with a visible base was always defined as the
left wing to simplify calculations, and the silhouette interpretation consistent with this was
selected by the computer program.

2.3.1. Filming coordinate system

The first stage of the procedure involved digitizing seven points on each frame of the sequence
and storing the yz coordinates in the computer. Two of these points, the timing mark and the
reference point, are not of direct interest to the kinematic analysis. The remaining points are
shown in figure 3a: A, the visible wing base; £, the corresponding wing tip; £, the opposite
wing tip; F,, anterior end of the body axis; B, posterior end of the body axis. The coordinates
of P, were measured with respect to its position in the initial frame of the sequence, the reference
point being used to correct for frame misalignment in the projector and camera. The
coordinates of P,—P, were specified with the origin of the x,y,z axes translated to the visible
wing base, as in figure 3a. After all frames had been digitized, the maximum projected wing
length R’ was determined and used to normalize the coordinates. The x coordinate of the wing
tip £, was then calculated as Xy =+ (1—gi—2D)h; (2)
the sign must be determined by the observer, remembering that the wing is considered to be
the left one.

2.3.2. Coordinate system fixed in the body

(a) Coordinate transformation. The wing and body positions must now be transformed to
another coordinate system (x’,y’,z’) fixed in the body, which is illustrated in figure 35. The
origin is again situated at the wing base, and the x” axis is defined as horizontal. The y’ axis
passes through the wing bases and is therefore parallel to the line joining the wing tips according
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to the symmetrical assumption. This axis is not necessarily horizontal, allowing for the case
where the insect is rolled or banked through some angle 3 about the x’ axis. The coordinate
transformation is

X =Ax+py, (3)
Y =2 x+py+v,z, (4)
2= A3x+pyy+v,z, (5)

where (A, 4, v) are the direction cosines of the ', y’, 2’ axes with respect to the x, y, z axes. Because
the x” axis is horizontal, v, = 0.

(a) + B

ac

B(Z)/V‘

yv

Fiure 3. (a) Points on each frame used in the kinematic analysis, with the filming coordinate system translated
to the visible wing base. (b) The coordinate system fixed in the body, with the x* axis horizontal and the y
axis passing through the wing bases. (¢) Constructing a line (¢, f; g) parallel to the plane of symmetry, by adding
the lines that connect the wing tips at two moments in the cycle.

There are several methods whereby the direction cosines can be found by using the symmetry
condition, but I shall only describe the one that I have found to be most accurate. The
procedure basically involves finding the direction of the y’ axis by using the symmetry condition
and data from two frames, then defining the 1’ axis by the intersection of the plane
perpendicular to the y” axis and the horizontal plane y = 0, and finally solving for the 2z’ axis
which forms an orthogonal set. The direction cosines were calculated for each wingbeat.

The line joining the two wing tips is parallel to the y’ axis in individual frames, and its
direction in the (x,y, z) system may be written as

Xg— X Zo—2
a,1,c =<2 21,22 3). 6
( ) Y2—Ys3 Y2—Ys ©)

The direction number ¢ is simply theslope of the line joining the wing tips on the two-dimensional
film image (figure 34): a mean value ¢ was calculated for the wingbeat by weighting the values
in each frame by the square of the projected line length, which should be proportional to its
variance. The direction of the y” axis cannot be determined completely, however, because the
x5 coordinate of the opposite wing tip is unknown.

This direction can be found from a line perpendicular to the y” axis. Such a line may be defined
by the wing tip positions in two frames of the wingbeat, as illustrated in figure 3¢. Lines are
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first constructed between corresponding wing tips in frames 1 and 2, but the x direction of the
line joining the opposite wing tips is unknown. The two lines are equal in length when the wing
motions are symmetrical, however, and so this direction can be calculated,

%3(1) —23(2) = £{[xa(1) =%,(2)1°+ [52(1) —92(2) ]2 + [22(1) — 25(2)]?
—[95(1) —95(2)12 = [25(1) —23(2) P}, (7)

and the sign must be determined by the observer. Vector addition of the two lines then results
in a direction (e, f, g) that is parallel to the plane of symmetry,

¢ = x3(1) = x5(2) +x3(1) — x5(2), (8)
S=92(1) =92(2) +5(1) —5(2), (9)
8= 2(1) = 25(2) + 23(1) — 24(2). (10)
Because this line is perpendicular to the y” axis, the unknown direction a in equation (6) can
now be solved: a= (—f—gt)/e. (11)

The direction of the y” axis can be determined with considerable accuracy using this method.
Vector subtraction of the connecting lines would yield this direction immediately, but the
resultant would be short and its direction prone to error. By adding the lines and choosing two
frames at either end of the wingbeat, a long vector which is very accurate in direction is
obtained, and the estimate of a is greatly improved. The results for several combinations of
frames at either end of the wingbeat were averaged to produce a mean value g for the analysis.

Once the directions of the y* axis are found, those for the " and z’ axes can be calculated
as outlined above. The direction cosines are then given by

1 _a

Ay p1,v4) = (id—, 7 0), (12)
1 1
a 1 c

Mopiyve) = (£ 747 +7), (13)

ac ¢ a+l1
A sMU3, V3) = <_ s T B >> 14
( 3> M3 3) dl d2 dl dz d] d2 ( )
where the normalizing factors are
dy = (142 +2)}, (15)
dy = (1+a2)k (16)

The choice of signs for the direction cosines of the x” and y” axes is easily made. When the insect
is facing the right side of the frame, towards y > 0, x, must be positive and A, negative; these
signs are reversed when the insect is facing towards the left.

Once the direction cosines have been determined for the wingbeat, the coordinates of the
wing tip P, can be transfarmed to the (1, y’, z’) system by using equations (3)—(5). The
coordinates of the body points P,, P, and P; cannot be transformed, however, until appropriate
values have been calculated for x. For the purposes of the kinematic analysis, we may simply
take the projection of these points onto the 1"z’ plane by rays that are parallel to the x axis.
The x coordinate for P;, P, and P; can then be calculated by

x=(=py—vy2) /Ay, (17)

and the coordinates can now be transformed.

4 Vol. 305. B
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(b) Kinematic parameters of the body. The kinematic parameters for the body are illustrated in
figure 4a. The mean flight velocity V is expressed non-dimensionally as the number of wing
lengths travelled per wingbeat, and is positive in forward flight. The angle between the mean
flight path and the horizontal x" axis is denoted by £, which is positive when the insect is
climbing. These two parameters were calculated by a linear regression of z; on x; for the
transformed wing base coordinates. The angle ¥ between the longitudinal body axis and the
horizontal x’ axis is readily calculated from (x3,z;) and (xj, z5). Values of V, £ and y are
unreliable for approximately front/back camera views, however, because the projected x’
coordinates of the body points are then very sensitive to small measurement errors. The roll
angle 7, shown in figure 34, is equal to cos™! () ; it is given a negative sign when the left wing

is below horizontal.

(a) 2
y
Ve )
{ =g IB

®
f N
N
~/\*v
=2

FiGURE 4. (a) The kinematic parameters relative to the coordinate system fixed in the body. (6) The kinematic
parameters for the wings relative to the coordinate system fixed in the stroke plane. See text for explanation.

The wing motion is approximately confined to a plane during flapping flight, the stroke plane.
This plane is tilted at an angle 8 to the horizontal x axis, and passes through the wing bases.
I have defined # by the slope of the linear regression line of z’ on x” for the wing tip £,.

2.3.3. Coordinate system fixed in the stroke plane

(a) Coordinate transformation. A third coordinate system, based on the stroke plane, was
constructed for the description of the wing kinematics. The new axes (X, 7,2Z) are obtained by
rotating the old ones (x',y’,z’) about the y’ axis through the angle g:

% =" cos f—2'sin g, (18)
=y, (19)
Z = x" sin f+2" cos B. (20)

This system is fixed in the stroke plane, as shown in figure 45, and is a logical choice for the
wing motion.

(b) Kinematic parameters of the wings. The wing position is described by spherical coordinates
(¢, 0) for this system based in the stroke plane, where

¢ = tan"(—=%,/7,), (21)

6 = tan™'[z,/ (%2 +72)}]. (22)
The positional angle ¢ is positive when the wing is dorsal, and negative when ventral. The
angle of elevation 6 is positive when the wing lies above the stroke plane.
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2.3.4. Wingbeat frequency

The time interval between frames was determined from the 1 ms timing marks placed on
the film by the camera. Although a significant time elapses before the camera reaches steady
running speed, film acceleration is nearly constant during a sequence and the time intervals
were adjusted for this. The wingbeat frequency n was measured between two successive
pronations at the moments when the wing chords were perpendicular to the stroke plane. This
position could be determined with good temporal accuracy because pronation is very rapid,
and the moment was chosen between two frames by visual interpolation if necessary. The
accuracy of the frequency measurement is about +2 9.

Before ending this section, some general comments on the analysis procedure might be
appropriate. The basic requirements for the method are (i) a long focal length lens, (ii) a
single-view film sequence showing symmetrical flight and (iii) a maximum projection of the
wing length, (iv) negligible bending along the longitudinal wing axis, and (v) either patience
with laborious calculations or an on-line computer system. The initial investment of time in
developing the film analysis system and writing programs was considerable, but the complete
kinematics for one wingbeat could then be obtained in little more than an hour, including
digitizing, analysis, print-out and plotting of results.

3. RESULTS AND DISCUSSION

The performance of the agitated insects inside a bare flight chamber under glaring lights
was surprisingly similar to their flight behaviour in the wild. The drone-fly Eristalis tenax
seemed least affected by the unnatural conditions, and would often hover near the centre of
the chamber during the filming. The hover-fly Episyrphus balteatus gave a similar performance,
but sometimes stopped its wingbeat and dropped to the bottom of the chamber in protest to
the lights. Excellent film sequences were obtained for both of these territorial dipterans, showing
the precise hovering that is characteristic of them in this field. The honey bee Apis mellifera,
bumble bees Bombus, and the cuckoo bee Psithyrus vestalis hover with slightly less accuracy,
and their manoeuvres are slower and clumsier in confined spaces. A few very good films were
obtained of these insects ponderously flying around the chamber, but they often collided with
the chamber walls during the films, probably because of disorientation by the lights.

The crane-flies Tipula obsoleta and T. paludosa are slow steady fliers showing little manoeuvr-
ability, and they normally ‘hover’ only for brief moments when changing the direction of flight.
This behaviour was also found in the flight chamber: they inspected the cage using slow flight,
concentrating on its top and side boundaries. The plume moth Emmelina monodactylus is also
a slow flier, but has a more erratic flight path and is more manoeuvrable than the crane-flies.
Inside the flight chamber it quickly landed on a side wall, and no films of hovering were
obtained.

I have never observed°the Mediterranean flour moth Ephestia kuehniella in nature, but it
gave a dazzling aerobatic display inside the flight chamber: loops, 180° banked turns within
the course of 2 wingbeats, and Immelmann turns (a half-loop followed by a half-roll to reverse
the direction of flight). I suppose that many of the pyralid moths, with their low wing loadings,
can match this performance. During this entertainment there were no sequences that could
be construed as hovering, even by the most flexible of definitions.
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The green lacewing Chrysopa carnea is also very manoeuvrable in the flight chamber and
can change the direction of flight in a single wingbeat, as can the other neuropteran Pterocroce
capillaris. Even when filmed during take-off, the flight was too fast to be considered as hovering:
it would accelerate to fast flight during the first wingbeat. This performance may seem
somewhat surprising since Chrysopa is typically a slow flier, but a great manoeuvrability would
certainly be advantageous in escaping from bats, their main predators.

The seven-spot ladybird Coccinella 7-punctata is a medium-speed steady flier that exhibits
gentle manoeuvres. I have never observed it hovering in the field, but its ability to take off
vertically indicates that it should be able to do so. When filmed during take off it usually entered
a banked spiral, losing altitude while gaining speed, and finally levelling out ifit had not collided
with the chamber wall by that time. A few take-offs showed straight flight with no loss of height,
however, and one of these was slow enough to be considered as hovering. During flight the
elytra flapped through a small angle (about 15-20°) in phase with the hindwings. This has
been found for other Coleoptera and is probably a passive movement accompanying the beating
of the hindwings (Stellwaag 1914; Magnan 1934; Burton & Sandeman 1961). Because the
amplitude of flapping and the size of the elytra are small compared with the hindwings, their
aerodynamic effect in hovering will be neglected.

3.1. What is hovering?

Only a very few of the film sequences can be classified as ‘hovering’ according to a pedantic
definition, that the mean wing force is exactly vertical and precisely balances the weight of the
insect. In practice, however, flight at low velocities and low accelerations can be regarded as
hovering because the kinematics and aerodynamics will not be significantly different. A less
formal definition of hovering, even if an arbitrary one, is clearly needed for selection of the
film sequences. This definition must accord with the aims of the investigation and hence select
sequences where the wing kinematics produce forces that are very similar to ‘true’ hovering.

3.1.1. Manoeuvres

Animals often appear to ‘hover’ briefly while changing the direction of flight, but the wings
are generating acceleration forces in these periods. For some of the films I doubt if steady flight
was ever achieved: the insects continuously manoeuvred around the flight chamber and
‘hovered’ only during these fleeting moments. Do such accelerations represent a significant
departure from hovering?

Manoeuvres were usually confined to the horizontal plane and were remarkably similar for
the different insects. (The hover-fly Episyrphus is omitted from this discussion because films
of manoeuvres are lacking.) The horizontal changes in flight direction and velocity were always
preceded by a tilt of the stroke plane: f was increased as the insects accelerated forward, and
decreased, usually becoming negative, as they decelerated or began backward flight. Similarly,
accelerations in lateral directions were accompanied by a roll of the stroke plane. The obvious
analogy between this type of control and that used for helicopters is quite valid. Consider a
hovering insect that changes £ to accelerate into forward or backward flight. The flight velocity
is small during the initial stage of acceleration, and the airflow around the wings will still be
governed largely by the flapping velocity. The aerodynamic forces relative to the stroke plane
will be unchanged, and so the vertical hovering force will simply be rotated through the same
angle as the stroke plane. This agrees with Hollick’s (1940) results for tethered Muscina stabulans
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in still air: the resultant force was nearly perpendicular to the stroke plane for any body
orientation. The horizontal thrust component of the rotated force will be mg sin (8 — f,), where
B, is the value for hovering and m is the total mass, and the vertical component will be
mg cos (f—fB,). Small tilts of the stroke plane will thus produce substantial horizontal thrusts
and accelerations, while the vertical force component supporting the weight is almost
unaffected: a tilt of but 10° generates a thrust of 0.17 mg, which would accelerate the insect
to a velocity of 1.7 m s™! in just 1s, but the vertical force is decreased by only 0.015 mg.

Most of the observed manoeuvres fit this description quite well — the vertical hovering force
mg is simply rotated through a small angle — and we may conclude that they are not significantly
different from hovering. Very brisk manoeuvres may require horizontal forces comparable with
the weight of the insect, however, and cannot be considered as hovering: some sequences of
Ephestia and Chrysopa even demanded thrusts of between two and five times the weight. The
stroke plane was tilted through large angles for these cases, and the net force from the wings
must have been much greater than mg.

3.1.2. Steady flight

Consideration of the mean forces required for steady flight leads to a similar conclusion: the
mean force is hardly different from that of hovering at any flight speed. In steady flight, the
horizontal thrust balances the body drag of the insect. Weis-Fogh (1956) found that a thrust
equal to 0.06 mg was needed for locusts flying at 3.5 m s, and Vogel (1966) measured values
of 0.07 and 0.18 mg for Drosophila flying at 1 and 2 m s™1, respectively. Rough calculations
for my insects reveal that similar thrusts are required for fast forward flight: less than 0.1 mg.
In all of these cases the total force demanded of the flapping wings does not exceed 1.02 mg.
This force is largely vertical with a forward tilt of less than 10°, and usually less than 5°. For
both steady and accelerated flight it is obvious that the mean force differs little from that for
hovering; mean force is thus an insufficiently selective criterion for choosing film sequences to
illustrate ‘hovering’.

A strong correlation between flight speed and body angle y has been demonstrated for
Drosophila (Vogel 1966 ; G6tz 1968; David 1978) and the honey bee (Nachtigall efal. 1971; Esch
et al. 1975): the body angle is large in hovering and becomes more horizontal as flight speed
increases. This behaviour is also evident on my films when steady flight at various speeds can
be observed. (Unfortunately, steady flight at different speeds was not observed for the
interesting case of the hover-fly Episyrphus, which can hover with a nearly horizontal body.)
The angle between the stroke plane and the body axis is constant for Drosophila (Vogel 1966)
and slightly variable for the honey bee (Stellwaag 1916; Neuhaus & Wohlgemuth 1960), so
these results indirectly show that the stroke plane rotates with the body and becomes more verti-
cal with increasing flight speeds. Greenewalt (1960) has found a direct correlation between £
and flight velocity for hummingbirds as well. Vogel (1966) interpreted this phenomenon as an
actuator disc with variable tilt; the direction of the resultant wing force, and hence its vertical
and horizontal components,“is controlled by the tilt of the stroke plane. For accelerations at
low flight speeds, as discussed above, this is quite valid and the resultant force simply rotates
with f. His interpretation is misleading for steady flight at higher speeds, however, because
the resultant force rotates through a much smaller angle than the stroke plane, as Weis-Fogh
(1956) had previously noted. The stroke plane rotates through about 40-60° from hovering
to fast forward flight for the insects considered (excluding Episyrphus again), but the resultant
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force tilts by less than 10°. A more direct explanation of the large changes in £ lies in the
asymmetry of upstroke and downstroke forces introduced by the flight velocity, and this will
lead us to a definition of hovering.

3.1.3. Advance ratio

Figure 5 ashows three versions of the path through the air ofa wing flapping in two-dimensional
motion at a stroke plane angle of 20° (the motion is sinusoidal and the effects of the induced
velocity are ignored, but these details do not qualitatively affect the arguments). The paths

o«

(@) Y

520 RIS
w L/ 0.5
/W

|

{2 2

(b) ’e

Ficure 5. The path through the air for a wing flapping in two-dimensional motion from right to left, at different
values of the stroke plane angle # and advance ratio J. Downstroke forces are shown on the right, upstroke
on the left. A lift:drag ratio of 4 is arbitrarily assumed. (a) g = 20°. (b)) § = 40°.

are drawn for three ratios of the flight velocity to the mean flapping velocity of the wing, and
by analogy to propeller theory I shall call this ratio the advance ratio J. As the ratio increases
through the sequence, two asymmetries develop in the wing path: (i) the relative velocity of
the wing on the downstroke becomes larger than on the upstroke, which is indicated by the
respective path lengths, and (ii) the downstroke path is more horizontal while the upstroke is
more vertical. The downstroke force progressively dominates as the advance ratio increases,
since the relative velocity is larger, but the thrust component of this force becomes smaller as
the path approaches the horizontal, and even negative at high ratios. The upstroke force
becomes increasingly horizontal with larger values of the advance ratio, but the relatively larger
thrust component is offset by the decreased magnitude of the upstroke force; at large ratios
this force will have negative vertical component if lift is still generated.

Consider a stroke plane tilted away from the hovering position; the thrust will be greater
than the body drag at first and the insect will accelerate forward. The net thrust is reduced
as the speed increases because of the smaller magnitude of the upstroke force and the more vertical
direction of the downstroke force. Hence the acceleration will decrease until an equilibrium speed
is reached where the net thrust balances the body drag. Higher values of # obviously increase
the initial acceleration, and they also enhance the thrust component at larger advance ratios.
This is primarily due to a more inclined downstroke path, as shown in figure 55, and the insect
will then accelerate to a higher equilibrium flight velocity. Figures 54, b also indicate that §
influences the type of asymmetry introduced by the flight velocity: the velocity difference
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between half-strokes is greater when f is small, and the direction of the wing paths is most
different for large values of S.

These deliberations have been directed towards animals that hover with a horizontal stroke
plane, the hummingbirds and most insects, but the principles are more generally applicable.
The stroke plane angle # must increase with the advance ratio J to produce a wing path
that, when combined with the lift:drag ratio of the wings, results in the required mean force.
This process necessarily entails an asymmetry between half-strokes as J increases, leading to
the classic condition of fast forward flight where the downstroke force is completely dominant.
For a definition of hovering we may take the other end of the spectrum and demand that the
advance ratio be small enough that the flight velocity does not introduce a significant
asymmetry. Judging from the wing path diagrams, I will arbitrarily define hovering as flight
at values of J less than 0.1: this simply ‘looks’ like hovering. This value of J will alter the relative
velocities on the half-strokes by less than 109, for a horizontal stroke plane, and the angles of
attack by less than 6° for a vertical one. The velocity difference for small values of # may lead
to a force asymmetry of +209, by the quasi-steady aerodynamic assumption (paper I), but
the angles of attack will be approximately the same: thus the force coefficients will not be affected.

The flapping velocity U varies linearly along the wing, and some representative value must
be chosen to calculate the advance ratio. I suggest using the mean wing tip velocity, U, = 2®nR,
where the stroke angle @ is in radians: although this is the maximum mean velocity, it
underestimates the flapping velocities during the middle of a half-stroke, and hence gives a
conservatively high estimate of J when the aerodynamic force is greatest. The advance ratio
/s then J = V/2®nR = V/20, (23)
which is the inverse of Walker’s (1925) parameter £. The surprising result is that for typical
values of @, around 2 rad, non-dimensional flight velocities up to 0.4 wing lengths per wingbeat
satisfy this classification of hovering. Many slow fliers, such as the crane-flies, rarely exceed this
velocity range and effectively ‘hover’ most of the time. The power requirements for these insects
must be very similar to those for ‘true’ hovering, which is energetically expensive because of
the large induced power component. Low wing loadings and relatively large wing spans are
typical of these slow fliers, and undoubtedly represent adaptations for reducing the induced
power demand (see paper VI).

3.2. The selected sequences

Based on the considerations of the preceding section, the results from eleven film sequences
are presented here as examples of hovering (figures 6-16). The top figure for each sequence
contains more quantitative information than meets the eye, and will be explained with reference
to the ladybird (figure 6). The stroke plane, at an angle £ to the horizontal, is given by a line
connecting the two opposing arrows. This line passes through the wing base axis, which is
indicated by a cross on the body, and the distance from the cross to the tip of either arrowhead
denotes the wing length R, The length of each arrow is the mean chord ¢ on this scale. The
side view of the body, showing the mean body angle ¥, is also drawn to scale. It must be noted
that the leg positions are only approximately correct, since their position had to be estimated
in the sequence from a viewpoint that was rarely from the side. An arrow representing the
non-dimensional flight velocity V corresponds to the wing length scale and depicts how far,
and in which direction, the insect moves during a single wingbeat. The arrow is not drawn when
V is less than 0.05. The magnitude of V and its direction £ are given in the figure legend.
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The roll angle 5 also appears in the legend, but the sign of  could not be determined for
angles less than about 2°.

The wing path relative to the stroke plane is indicated by the curve, and the data points
represent ¢ and 6 for individual frames. Values of ¢ and @ may be read off a linear orthogonal
grid, constructed with ¢ = 0 at the wing base and ¢ = +90° at the points of the arrowheads
(6 = 0 along the stroke plane). The wing path is not given as a simple side view, therefore.
The wing attitude, drawn from visual estimation, is also presented. The angle of attack is
greatest near the wing base and decreases towards the tip for all of the insects, so I have drawn
the attitude around 0.7 R as representative. The chord is not properly scaled.

@/deg

F1GURE 6. Results for the ladybird Coccinella 7-punctata (LB04). V = 0.19, £ = 44°, y = 20°. The aerodynamic
role of the elytra, shown projecting above the body in this side view, should be negligible in hovering.

The lower drawing shows the positional angle ¢ plotted as a function of non-dimensional
time (= nt); the curve is drawn by eye. The vertical bars on the graph indicate the middle
of pronation (near ¢,,,,) and the middle of supination (near ¢,,;,). The wingbeat frequency
n and the ratio of duration of downstroke to upstroke d/u are given on this graph; the stroke
angle @ (= @ ax —Pmin) and the mean positional angle ¢ appear above it. The open circle
on the graph indicates the frame showing the maximum projected wing length. In the error
analysis the coordinates of this point are shown to be unreliable, so it is not included in the
wing path of the top figure. The results generally confirm the predictions of the error analysis.
Departures from the expected errors are usually attributable to frames showing an edge-on view
of the wing, where the wing tip position could not be absolutely identified : in some frames the
position was so ambiguous that data were not taken.

The ladybirds (figure 6), crane-flies (figures 7, 8), honey bees (figure 14) and bumble bees
(figures 15, 16) all hover with a horizontal stroke plane, but it cannot be determined from the
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T

Ficure 9. Results for the hover-fly Episyrphus balteatus (HFOT). 17 = —0.24, £ =26° 9 = 1°.

Ficure 10. Results for the hover-fly Episyrphus balteatus (HFO08). V

=003, £=—1° 5 = 2°.
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Ficure 11. Results for the hover-fly Episyrphus balteatus (HF08). V¥ = —0.03, £ = —16°, 7 =1°,

Ficure 12. Results for the drone-fly Eristalis tenax (DFO1). ¥ = —0.05, £ = —6°, 5 = 3°. Two cycles are
plotted on the lower diagram because of some uncertainty in the wing tip position during film analysis.
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Ficure 13. Results for the drone-fly Eristalis tenax (DFO1). V = 0.18, £ = —20°, n=2°
FIGURE 14. Results for the honey bee Apis mellifera (HBO1). V¥ = —0.18, £ = —13°, 5 = 6°.
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films if 4 is actually zero during hovering. From §3.1.1 it is obvious that £ will be affected by
the almost continuous manoeuvres inside the flight chamber, and we must be content to note
that £ is not far from zero for the selected sequences. The ladybird (figure 6) shows the greatest
deviation, with 8 = 18°, but this sequence shows the insect steadily accelerating forwards and
upwards seven wingbeats after take-off: this value of £ largely accounts for the forward
acceleration. Similarly, non-zero values of the roll angle 7 are responsible either for lateral
accelerations or for properly banked turns at steady flight speeds.
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FicurE 15. Results for the bumble bee Bombus hortorum (BB04). Because of a nearly front view, the flight velocity
and body angle could not be determined accurately from the kinematic analysis. The insectappears to be climbing
vertically, but the flight velocity Vis only about 0.01. 9 = 2°. Mean body angle ¥ is estimated from the projected
body length.

FiGURE 16. Results for the bumble bee Bombus lucorum (BB0O8). V= —0.02, £ = 21°, 7 = 10°.

The drone-fly Eristalis habitually hovers with a horizontal stroke plane, and can vary the
angle between the stroke plane and the body by up to 10° (figures 12, 13). I have also observed
this dipteran occasionally hovering with an inclined stroke plane in the field, but it would not
do so in the laboratory. This provides an interesting contrast to the hover-fly Episyrphus, which
prefers to hover with an inclined stroke plane but can hover equally well with a horizontal
one. The three hover-fly sequences (figures 9-11) have captured this range, showing hovering
with values of 8 of —2°, 24° and 32°. The angle between the stroke plane and the body axis
is, however, roughly constant for these examples.

The stroke angle @ for various insects has already been discussed by Weis-Fogh (1973),
and the values presented here are in close agreement. It is about 120° for most insects, but nearly
180° for Coccinella and other Coleoptera. Hover-flies using an inclined stroke plane are at the
other end of the spectrum with very small stroke angles: 66-69°.
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3.3. Kinematics of the body
3.3.1. Oscillations of body position

The phasic wing forces produce very little cyclic movement of the body on the film sequences.
The position of the wing base in the plane of symmetry coordinate system (x’,y’,z’) was
calculated according to the mean flight speed V and direction £, and then subtracted from
the observed position in each frame to give the deviations of the vertical Az’ and horizontal
Ax’ positions from the mean motion. For all of the insects except the ladybird these deviations
were about + 1-2 9, of the winglength: this is comparable with the measurement accuracy for
body position, and so phasic variations in x’ and z’ could not be detected. In fact, a scaling
argument shows that the magnitude of these deviations should remain a simple proportion of
the wing length for all hovering animals, using the quasi-steady aerodynamic analysis of
paper L. Based on the assumption that the aerodynamic forces are proportional to wing area
and the square of the flapping velocity, the amplitude of positional accelerations is proportional
to n?R*/m, where n is wingbeat frequency, R is wing length and m is total mass. Integrating
this relation twice with respect to time then proves that the amplitude of oscillations in body
position is proportional to R*/m and, quite surprisingly, is independent of wingbeat frequency.
Since wing length is generally proportional to m* (Greenewalt 1962, 1975), the amplitudes of
Az’ and Ax’ are therefore proportional to wing length.

Figure 17a presents the deviations Az" and Ax’ for the ladybird sequence (figure 6); they
are about +39, of the wing length and show an interesting variation over the cycle. The
vertical position Az’ tends to lag slightly behind the mean value on the downstroke and lead
it on the upstroke, and the situation is reversed for the horizontal position Ax’. The cyclic wing
forces must lead these changes in position by 180°, so the results indicate that the downstroke
provides a greater vertical force while the upstroke generates a larger horizontal thrust. This
difference between the half-stroke forces is due to the tilted stroke plane: the net wing force may
simply rotate with the stroke plane during accelerations but, because of wing drag, the relative
proportions of vertical and horizontal components will be altered for the half-stroke forces. As
B increases, the partitioning of the roles of weight support and thrust becomes more pronounced,
and must lead to greater oscillations in the body position. The ladybird sequence has the largest
value of f for the insects that ‘hover’ with a horizontal stroke plane, and this may explain why
phasic variations in body position were found only for that case.

3.3.2. Oscillations of body angle

Oscillations of the body angle y also proved to be small in general; the amplitude is less
than + 1° for the Hymenoptera and higher Diptera, +2° for the tipulids, and + 3° for the
ladybird. A cyclic variation can be detected for the larger amplitudes, and this is illustrated
in figure 174 for the crane-fly sequence (figure 7). The maximum and minimum body angles
are found near the dorsal and ventral ends of the stroke, respectively, which implies that the
greatest nose-down pifching moments are produced near the dorsal end while the nose-up
moments occur around the ventral end. The flapping wings generate pitching moments from
(1) the lift force acting on the wing length, especially when the wings are near either end of the
stroke, (ii) the drag force acting on the small moment arm between the wing bases and the
centre of mass, and (iii) the inertial wing forces (mass and virtual mass) acting on that same
moment arm. The lift-produced moments are the only ones consistent with the phase of the
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body oscillations, however: the other moments would yield extreme body angles either during
the middle of half-strokes (ii) or else at the ends but reversed in direction (iii). This result may
seem surprising since the lift force must fall to small values at either end of the wingbeat, but
the large moment arm afforded by the wing length must more than compensate for this. When
viewing Weis-Fogh’s films of the tiny wasp Encarsia, I have noticed that the body angle oscillates
much more than for most insects, and this is undoubtedly a consequence of the ‘fling’
mechanism (Weis-Fogh 1973): the dorsal fling particularly enhances the wing lift at that end
of the cycle, and must generate large pitching moments. My films of other insects that perform
a fling (Ephestia, Emmelina and the Large Cabbage White butterfly Pieris brassicae) suggest that
this observation is more generally true.

(a) LBO04 ]
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=)

Ax’
)

60 (b) CFO2 7
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S
(=)

20

(=N
—

i
FiGURE 17. (a) Deviations of the vertical Az’ and horizontal Ax’ positions of the wing base from the mean flight

path for the ladybird sequence (figure 6), expressed as fractions of the wing length and plotted against cycle
time. (b) Body angle y for the crane-fly sequence (figure 7) during the cycle.

3.3.3. Pitching moments, mean body angle and manoeuvres

Since the pitching moments from wing lift appear to be the dominant ones, they should also
govern the mean body angle ¥. The mean moment about the wing base axis required to
maintain ¥ is mgl, sin (¥ —X,), where ¥, is the free body angle and /, is the distance from the
wing base axis to the centre of mass (see paper II). For nearly all of the insects ¥ — x, is negative,
and a mean nose-down pitching moment is therefore demanded from the wing lift. This requires
that the centre of lift over the wingbeat must be located dorsally, which accords with the positive
values found for the mean “positional angle @. Thus the insects can control the mean pitching
moment, and hence the mean body angle, simply by the mean angular position of the flapping
wings.

The two Eristalis sequences offer support for this interpretation of the role of ¢. In figure 12,
¢ and ¥—x, are only 1° and 2° respectively; neither value is significantly different from
zero. The wing motion is symmetrical in the dorsoventral direction and no mean pitching
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moments are required to maintain the mean body angle, which indicates that the net pitching
moment is indeed zero when ¢ = 0. In the other Eristalis sequence (figure 13) the wing motion
is shifted dorsally, with ¢ = 10°, and the mean nose-down pitching moment that this should
produce agrees with a reduction in the mean body angle from 52° to 34°. A similar conclusion
may be drawn from the two Episyrphus sequences (figures 10, 11), where a dorsal shift in ¢
again corresponds to a decreased body angle. The results for the third hover-fly sequence
(figure 9) cannot, however, readily be explained. Only a small nose-down pitching moment is
demanded of the wings since ¥ is close to y,, but the dorsally shifted wingbeat skould produce
a large moment. Perhaps this moment did exist and was used to rotate the body and stroke
plane nose-down, halting the backward flight by the consequent forward thrust. Unfortunately
I cannot tell because, like the proverbial fish that got away, the film ended at that point. These
comments on Eristalis and Episyrphus provide an interesting counterpoint to Hollick’s (1940)
tethered studies on another dipteran Muscina stabulans. On interpretation of his results in light
of the above discussion, he found that the centre of lift for the flapping wings also shifted with
the mean positional angle ¢. The pitching moments produced by this would have controlled
the body angle had the insects not been tethered. Muscina altered ¢ indirectly, however, by
changing ¢..;,, while keeping ¢, nearly constant; thus the mean pitching moment and the
stroke angle @ were correlated. This contrasts with the examples above, where ¢ is altered
independently of &.

By changing the body angle, a dorsal-ventral shift in the mean positional angle will also tilt
the stroke plane and hence can be used to control manoeuvres if, as discussed in §3.1.1, the
angles of attack relative to the stroke plane remain unchanged. This method of control is not
suitable for brisk aerobatics because the moment of inertia of the body will prevent rapid
changes in attitude, but it is adequate for most manoeuvres. These comments also apply to
any mechanism for altering £ via ¥: for the same longitudinal wing axis kinematics, the mean
pitching moment can be changed by increasing or decreasing the lift during parts of the
wingbeat cycle via the angle of attack or the robustness of a fling. The sluggishness of the body
response may be circumvented to some degree by the honey bee and the drone-fly Eristalss,
which can alter £ independently of ¥ to some extent. The hover-flies and other animals that
hover with an inclined stroke plane may have the best solution, however: the body is already
close to horizontal, and by changing the angle of attack on either half-stroke they can produce
a large horizontal force for immediate acceleration. A somewhat similar mechanism seemed
widely used by the filmed insects that hover with a horizontal stroke plane. To accelerate into
forward or backward flight they increased the angle of attack to large values on the upstroke
or downstroke, respectively, and used the increased drag to initiate acceleration. This ‘paddling’
or ‘rowing’ motion also rotated the body (and the stroke plane) in the correct direction because
the enhanced horizontal drag force was applied above the centre of mass. As the stroke plane
tilted, the increased drag would produce an undesirable negative vertical force component, and
the insects reverted to more normal angles of attack after only one or two wingbeats. This
mechanism for initiating accelerations was clearly evident on some films of Tipula, Bombus,
Chrysopa, Pterocroce, Manduca, Emmelina, and Ephestia; the angle of attack on the drag-producing
half-stroke often approached 90° and provided large horizontal accelerations.

3.4. Wing tip path

Many previous investigators have devoted attention to the path of the wing tip relative to
the body: the wing tip path. Early work demonstrated that this path is a figure-of-eight for insects
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(Marey 1873; Magnan 1934) and hummingbirds (Stolpe & Zimmer 1939). Then the era of
wind tunnel studies on tethered insects began, and the situation became more confused. In still
air the flies Muscina stabulans and Musca domestica move their wings along simple paths (distorted
ellipses with no crossings) with the upstroke anterior to the downstroke (Hollick 1940). The
downstroke shifts anteriorly at flight speeds of 1.4 m s™!, however, resulting in a figure-of-eight
path. This is not a passive aerodynamic effect: Hollick elegantly showed that it is controlled
by the airstream over the antennae, and that the extent of the figure-of-eight depends on the
wind speed. Jensen (1956) found a simple path for the forewings and hindwings of the desert
locust Schistocerca gregaria in fast forward flight, but the upstroke was posterior to the downstroke.
Nachtigall (1966) described a simple path for the calliphorid fly Phormia regina in forward flight,
and the upstroke was also posterior to the downstroke. The path flattened and crossed over
near the bottom of the stroke when the wind tunnel was switched off, however, giving a slight
figure-of-eight. Wood (1970) discovered a simple path for the fly Calliphora erythrocephala in
forward flight, but the upstroke was anterior to the downstroke as in Hollick’s result for still
air. It is fair to say that nearly all possible combinations of figures-of-eight, simple paths,
reversed directions, moving and still air have been reported.

Nachtigall (1973) also found a simple path for Calliphora in free forward flight, but the
upstroke was posterior to the downstroke: the direction of this path is contrary to that reported
by Wood. Nachtigall suggested that the differences in the wing tip paths may be due to method
of mounting. Wood (1970) mounted the insect by the mesonotum, as had Hollick (1940). In
his earlier study Nachtigall (1966) mounted Phormia by the tip of the abdomen, reasoning that
this would least affect the thoracic mechanics. Free flight studies on Locusta migratoria (Baker
& Cooter 1979) reveal wing tip paths similar to Jensen’s (1956) locusts, which were mounted
safely either by the first abdominal tergite or by the plastron. Baker & Cooter noted some
variability in the wing path between and within individuals, but the path never crossed over
and formed a figure-of-eight.

Because of doubts concerning the method of mounting, the wing tip paths presented here
for free hovering flight should be illuminating. A figure-of-eight with the cross-over near the
bottom end of the stroke is seen for the ladybird Coccinella (figure 6), the crane-fly Tipula paludosa
(figure 8), and the bumble bee Bombus hortorum (figure 15). The other crane-fly T. obsoleta
(figure 7) and the bumble bee B. lucorum (figure 16) show simple paths instead. The wing path
for the honey bee Apis (figure 14) crosses over twice, but Neuhaus & Wohlgemuth (1960) have
also reported a path with three crossings.

A smooth simple path is found for the drone-fly Eristalis in one sequence (figure 12), but
this is flattened with a slight dorsal cross-over in the other (figure 13). A similar dorsal loop
is seen for the hover-fly Episyrphus in figure 9, but the remaining path has collapsed into a single
curve. This situation is reversed in figure 11, where the loop is ventral and the dorsal paths
are coincident. Finally, a slightly open simple path is shown in figure 10 for the hover-fly.

Rather than help clarify the confusion over wing tip paths, these results from free flight only
add to the problem. All of the patterns previously described are found here, except for a simple
path with the upstroke anterior to the downstroke. In some cases a general wing path may
exist and even be species specific: the differences between the two crane-fly species are consistent
in six other films that I have analysed. Other insects, such as the hover-flies, show such a large
individual variation that no general path can be detected. Previous investigators have also found
variability in the wing tip paths, to greater or lesser degrees (Hollick 1940; Wood 1970;
Nachtigall 1973 ; Baker & Cooter 1979). The exact form of the wing path is probably not very


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

64 C.P.ELLINGTON

important in flight, and we could be attaching undue significance to it simply because it is a
characteristic of the complicated flight system that can be measured with relative ease. The
variability is largely confined to the ends of the wingbeat cycle, where aerodynamic forces are
small, and these slight changes in the direction of the wing path should not alter the net wing
force significantly. Instead, the path may indirectly reflect control mechanisms initiated at the
wing base: changes in articulation to control ¢, ® or the angle of attack may alter the wing
tip path slightly, but more work like that of Pfau (1977) and Pfau & Nachtigall (1981) on
wing base mechanics is required to test this suggestion.

3.5. Wing motion as a function of time

Because of the scarcity of complete kinematic data, theoretical analyses of flight usually
assume that the wing position ¢(¢) follows simple harmonic motion. This approximation is
quite accurate for the hummingbird Melanotrochilus fuscus (data from Stolpe & Zimmer (1939)
as analysed by Weis-Fogh (1972)), but not so valid for the desert locust (Weis-Fogh 1956) and
the fly Phormia (Nachtigall 1966). I have compared the results from this study with simple
harmonic motion and found that ¢(¢) is only slightly different in general: for Episyrphus and
Eristalis the motion is very similar, for Coccinella and the tipulids it deviates but little, and the
Hymenoptera differ the most. In all cases the angular velocity during the middle portion of
half-strokes is reduced somewhat from the simple harmonic motion value. The accelerations
and decelerations at the ends of the cycle are consequently greater, and the inertial torques
must therefore be larger than the values given by the simple harmonic motion assumption.

In the quasi-steady assumption (paper I) the aerodynamic forces are proportional to the
square of velocity, and so the mean force will be given by the mean square of the angular velocity.
Furthermore, the mean profile power is then proportional to the mean cube of the angular velocity:
it is more properly the mean cube of the absolute value of the angular velocity, since the profile
power is defined as positive over the entire wingbeat. These two parameters thus offer a
quantitative evaluation, with aerodynamic significance, of the departure of $(t) from simple
harmonic motion.

It is useful to introduce a non-dimensional form of ¢ at this time,

b =2(6-9)/2, (24)
which ranges between +1 and —1 for the cycle. The angular velocity is then given by
d¢/dt = Ind d/di, (25)

and d¢/d is a non-dimensional angular velocity that can be used to compare different animals.
I have calculated the mean square and mean cube values for d¢/df based on the curves of
figures 6—16. Such values are usually expressed as the root mean square and cube root mean
cube: table 1 gives the root mean square and cube root mean cube values as well as the ratio
of the mean square to that for simple harmonic motion, and the ratio of the mean cube to that
for simple harmonic motion. For all insects the root mean square value is slightly less than that
for simple harmonic motion, and the quasi-steady aerodynamic force estimate is only some 4 9,
less according to the ratio of the mean square to that for simple harmonic motion. Similarly,
the cube root mean cube value is smaller, and the mean profile power is generally some 9 9,
less.

Since both the mean force and profile power are affected by the form of ¢(¢), we must consider
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them together to gauge the net consequences of the observed wing motion. The ratio of mean
lift to mean profile power can be used as one measure of the effectiveness of the wingbeat. This
ratio will be determined by the function ¢ (f) for given wing dimensions and flapping frequency,
and it is proportional to the ratio of the mean square to the mean cube for the quasi-steady
assumption. The ratio of the mean square to the mean cube of a quantity is maximum when
that quantity is constant, so a given lift can be produced for minimum profile power when
the angular velocity dé/df is uniform during each half-stroke. The form of $(t) observed for
the insects is clearly of this tendency when compared with simple harmonic motion, and this

TABLE 1. ROOT MEAN SQUARE (r.m.s.) AND CUBE ROOT MEAN CUBE (C.r.m.c.) FOR THE
NON-DIMENSIONAL ANGULAR VELOCITY d¢p/d¢

(Insects from the selected film sequences are identified by their ID code from paper II. Values for simple harmonic
motion (s.h.m.) are given for comparison. The ratios of the mean square (m.s.) and mean cube (m.c.) to the values
for simple harmonic motion are also presented. Values for | d¢/d|,,,x and the mean of |d¢/ di |t are given for use
in paper VI.)

. D m.s. m.c. dqs quSg
species fm.s. m.s.(s.h.m.) erm.c m.c.(s.h.m.) ’df max di|
simple harmonic motion shm 4.44 1 4.72 1 6.28 45.3
Coccinella 7-punctata LB04 4.32 0.94 4.52 0.87 5.88 41.0
Tipula obsoleta CF02 4.26 0.92 4.46 0.84 5.90 40.1
T. paludosa CF04 4.31 0.94 4.52 0.88 5.84 40.9
Episyrphus balteatus HF07 4.37 0.97 4.59 0.92 6.11 42.1
HFO08 4.38 0.97 4.63 0.94 6.37 43.2
(figure 10)
HFO08 4.40 0.98 4.68 0.97 6.38 45.4
(figure 11)
Eristalis tenax DFo1 4.38 0.97 4.65 0.95 6.45 43.5
(figure 12)
DF01 4.37 0.97 4.63 0.94 6.43 43.0
(figure 13)
Apis mellifera HBO01 4.30 0.94 4.51 0.87 6.00 41.2
Bombus hortorum BB04 4.36 0.96 4.61 0.93 6.33 42.5
B. lucorum BB08 4.35 0.96 4.58 0.91 6.46 43.2

is also true for many birds (Oehme & Kitzler 1974). The best case in the tipulid CF02, which
shows a 109, decrease in mean profile power for a given lift force, quite a substantial saving.
Conversely, the hover-flies and drone-flies benefit the least and save but 3 %,.

Finally, results should be noted for the ratio of the duration of the downstroke to that of
the upstroke, d/u. This ratio is somewhat variable for insects but is generally greater than unity
(Magnan 1934; Weis-Fogh 1956; Nachtigall 1966; Wood 1970; Baker & Cooter 1979). The
values for my insects are included on the figures, and were determined from times at the ends
of the half-strokes such that the ¢(f) curve was symmetrical about those times. The downstroke
is slightly longer than the upstroke, which agrees with the other authors, but there are two

notable exceptions: d/u equals 0.91 for the honey bee (figure 14) and a bumble bee (figure 16).

3.6 Wing attitude

It must be emphasized that wing attitudes were determined by visual estimation and cannot
be regarded as very accurate. The changes in wing attitude during the course of a wingbeat
are similar for all of the insects investigated and will be discussed in general terms. Plates

Vol. 305. B
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showing the film sequences for four insects will be used to illustrate the main points of this
section: figure 18, plate 1, is the crane-fly sequence of figure 7; figure 19, plate 2, is the hover-fly
figure 9; figure 20, plate 3, is the drone-fly figure 12; and figure 21, plate 4, is the bumble
bee figure 16. Although hovering sequences were not obtained for the plume moth Emmelina
and the lacewing Chrysopa, their wingbeats were similar to the other insects and are illustrated
in figures 22, plate 5, and 23, plate 6, respectively.

3.6.1. Angle of attack

During the middle portion of each half-stroke, the angle of attack a is greatest at the wing
base and decreases towards the tip: the wing is twisted. (The term ‘angle of attack’ will refer
to the geometric angle of attack relative to the wing path.) This twisting may be seen in figures
184, ¢, 19f, 0, 20f, m, 21 g,22f, [, and 23 k. The amount of twist is very difficult to judge, because
itis small, but may be around 10-20°. A similar wing twist has been found by other investigators
for insects (Jensen 1956; Nachtigall 1966, 1979, 1980; R. A. Norberg 1972 a; Weis-Fogh 1973;
Wootton 1981) and hummingbirds (Greenewalt 1960; Hertel 1966). The classical interpreta-
tion of wing twist is that it enables the wing to operate at the same angle of attack to the relative
airflow along its length, like a propeller: the direction of the relative wind, composed of the
flapping and induced velocities, becomes more horizontal as the flapping velocity increases
towards the wing tip. Thus the twist can allow each wing section to perform at its best angle
of attack. Vogel (1967a) found, however, that the wing is not twisted appreciably along its
length for Drosophila. Since the lift of detached Drosophila wings hardly varies over the range
of incidences normally encountered in flight (Vogel 19675), the absence of a twist presumably
is not deleterious (Weis-Fogh 1972). R. A. Norberg (197254) has suggested that wing twisting
in insects may be passively produced, because the chordwise centre of lift lies posterior to the
torsion axis of the wing. This seems quite likely, and it may also explain the lack of twisting
in tiny insects like Drosophila: to judge from the small elastic deformations seen on my films of
Drosophila melanogaster, the wings are relatively stiffer than those of larger insects and hence more
resistant to torsional twisting. '

It has generally been reported that the angle of attack a is set soon after the end of pronation
and supination, and remains nearly constant during most of the following half-stroke. This is
true for the hummingbirds (Stolpe & Zimmer 1939; Greenewalt 1960; Hertel 1966) and
Drosophila (Vogel 1967 a), for the downstroke of the locust Schistocerca (Jensen 1956), Phormia
and a tipulid (Nachtigall 1966, 1981), and for the upstroke of the chalcid wasp Encarsia
(Weis-Fogh 1973; Ellington 1975); a tends to increase steadily during the latter half of the
downstroke for Encarsia, however, and it varies considerably on the upstroke of the locust,
Phormia and the tipulid. For the insects considered here, « is nearly constant during the middle
portion of each half-stroke, as can be seen on the plates. The angle of attack is normally the
same on each half-stroke, and is typically about 35°at 0.7 R: it is slightly smaller for the hover-fly
in figure 9, a few degrees larger for the one in figure 10, and about 30° for the drone-fly in
figure 12. The angle of attack on the downstroke is less than that on the upstroke for the two
crane-flies, however: a is 25° and 35° respectively for figure 7, and 35° and 45° for figure 8.
For a tipulid in ascending flight, though, Nachtigall (1981) found that « is greater on the
downstroke instead of the upstroke. This is also true for the hoverfly in figure 11: & is 40-45°

on the downstroke and 35-40° on the upstroke.
These angles of attack are excessive when compared with the locust in fast forward flight
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Ficure 18. The sequence for the crane-fly Tipula obsoleta, used in figure 7. Alternate frames are shown.
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Ficure 19. The sequence for the hover-fly Episyrphus balteatus, used in figure 9. Alternate frames are shown.
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F1cure 20. The sequence for the drone-fly Eristalis tenax, used in figure 12. Alternative frames are shown.
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Ficure 21. The sequence for the bumble bee Bombus lucorum, used in figure 16.
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Ficure 22. The wingbeat of the plume moth (PMO1) Emmelina monodactylus in decelerating forward flight. Kinematic

parameters: V=142, £= —3° 5 =12° f=9° y=59° & =168°% ¢ =13°% n=329Hz, d/u=142
Alternate frames are shown.
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Ficure 23. The wingbeat of the lacewing (LWO02) Chrysopa carnea in a nearly vertical climb. Kinematic parameters:
V = 1.2, £ nearly vertical, 7 = —15°, ¥ estimated to be 60°, n = 28.2 Hz. Forewings: g = 14°, @ = 149°,
¢ = 18°,d/u = 1.17. Hindwings: g = 2°, & = 165°, ¢ = 4°, d/u = 0.91. The phase relation between forewings
and hindwings changes during the cycle, with the forewings leading by 0.18 of the period at pronation but

0.12 at supination. Every fourth frame is shown.
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and with hovering hummingbirds, where a is less than 15° (Jensen 1956) and 25° (Hertel 1966).
Although my values are visually estimated, I do not think the errors are large enough to account
for the discrepancy: values similar to mine have been found for Phormia (Nachtigall 1966, 1979),
Drosophila (Vogel 1967 a), two plume moths (R. A. Norberg 19724), Encarsia (Ellington 1975)
and a tipulid (Nachtigall 1981).

3.6.2. Camber

As well as the angle of attack, the wing profile is nearly constant during the middle portion
of each half-stroke. After viewing many films, showing the wingbeat from various directions,
I have formed the impression that the wings are gently cambered on both the downstroke and
the upstroke, which would certainly be advantageous for animals hovering with a horizontal
stroke plane. The hymenopteran wings are definitely cambered at rest, and on the downstroke
of some film sequences as well. This curvature disappears on the upstroke and the wing becomes
flat, if not curved slightly in the opposite direction — a feature that is more evident in plate 15
of Dalton (1977). Proximal regions of broad-based wings like Emmelina’s and Ephestia’s clearly
show a reversal of curvature each half-stroke: thus the wing is always properly cambered. The
photographs of two plume moths by R. A. Norberg (19724), drawings of Manduca (Weis-Fogh
1973), and Greenewalt’s (1960) figures for hovering hummingbirds also demonstrate this
reversal of curvature. For the other filmed insects, cambering in the middle of half-strokes is
small and difficult to judge, bordering on the resolution of the cine films.

The wing profile has been studied for insects tethered in wind tunnels, but such results apply
to fast forward flight. During the middle of each half-stroke the wings are nearly flat in general,
although the forewing of the locust is bent into a Z profile on the upstroke (Jensen 1956). In
addition, the locust deflects the posterior area of the forewing as a flap towards the end of the
downstroke, and Drosophila similarly increases the wing camber at this stage (Vogel 1967a).
The wing of Phormia is nearly flat during most of the cycle, but some camber can be seen at
the initiation of the upstroke (Nachtigall 1966, 1980). The high-resolution flash photographs
of Dalton (1975, 1977) provide excellent views of the wing profile, but the flight path and
velocity for the insects are unknown. Cambering during the middle of half-strokes is evident
to some degree on many of his photographs, as is the wing twist.

3.6.3. Wing rotation

As the wings begin to decelerate at the end of a half-stroke, they rotate about a longitudinal
axis and increase the angle of attack. The wing tends to rotate as a flat plate — little flexing
is evident — until it is perpendicular to the stroke plane. This point has been defined as the
middle of pronation and supination: pronation refers to the wing rotation at the dorsal end
of the cycle, and supination is at the ventral end. The bottom halves of figures 6-16 indicate
the middle of pronation and supination, which generally occurs just before, or at, the end of
a half-stroke; the only exceptions to this rule are the hover-flies using an inclined stroke plane
(figures 10 and 11), where tHe middle of pronation is after the end of the upstroke. The latter
half of rotation occurs while the wing accelerates into the following half-stroke. The wing is
flexed across the chord during this period, which will be discussed in §3.6.35. The two halves
of pronation and supination last about the same length of time in general, although a more
gradual beginning can be seen for the crane-flies (figures 7, 8) and the drone-fly (figure 12).

R. A. Norberg (19725) has demonstrated that the chordwise centre of mass for the wings
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of several dragonfly species is posterior to the torsion axis except at the pterostigma, a thickened
heavy spot close to the leading edge near the wing tip. With the centre of mass behind the
torsion axis, the wing will tend to rotate asit decelerates and accelerates at the ends of half-strokes,
a passive inertial response that will cause rotations in the correct directions. If the mass and
torsion axes are too far apart, however, the rotations may be excessive and result in negative
angles of attack at the beginning of half-strokes. This problem is analogous to the flutter of
aeroplane wings and helicopter rotors, and Norberg suggests that the pterostigma may function
as a dynamic mass balancer to prevent severe rotations. The pterostigma brings the centre of
mass anterior to the torsion axis near the wing tip, and thus counteracts the usual inertial
moments on more proximal regions. The position of the middle of pronation and supination
on figures 6-16 supports this idea: if rotation was an inertial response to the wing flapping,
the middle position would occur after the end of a half-stroke instead of before. Rotation must
be the result of active torsion applied to the wing base, aided perhaps by the inertial response.
The variable position of the middle of pronation for the hover-flies (figures 9-11) also suggests
active control. It is likely that heavy areas close to the leading edge near the wing tip are
responsible for an inertial balancing of the wing, and therefore regulate the relative proportions
of active and passive rotation.

Pronation and supination are largely confined to the periods of acceleration and deceleration
at the ends of half-strokes, and are approximately equal in duration. Each lasts 10-20 9%, of the
cycle period: about 10%, for the crane-flies, 159, for the ladybird and hover-fly, and 20%,
for the drone-fly and the Hymenoptera. The wing rotates through a large angle during this
time, typically 110°. The rotation carries the wing to an angle of attack some 10° less than
that used on the following half-stroke, and the wing then recoils to the proper value. I suspect
that it may be an elastic recoil, but can offer no proof. This was found at the end of pronation
and supination for all of the insects and can be seen in the plates, particularly figure 18 (plate 1)
for the crane-fly.

(a) Angular velocity. The angular velocity of rotation can be compared for different insects
by using a non-dimensional form &, equal to the mean angular velocity @ during pronation
and supination divided by the wingbeat frequency n. This represents the angle through which
the wing would steadily rotate over a cycle period; values are given in table 2 for the sequences.
These angles, about 10-21 rad, are of course much greater than the angle 2@ that the wings
flap through during a cycle, typically around 4 rad. For Encarsia, @ is about 10 during the ‘fling’
at pronation (Weis-Fogh 1973), but values are less than 10 for Schistocerca (Jensen 1956) and
Phormia (Nachtigall 1966, 1979) in fast forward flight.

In paper IV the velocity of the wing edges during rotation will be compared with that during
flapping. A new dimensionless number is useful in that context: the mean rotational velocity
@: for the wing edge, based on the mean chord, divided by the mean flapping velocity of the
wing tip, U, = 2@&nR. This ratio is simplified by using the relations above and in paper II, and
its final form is &/®R, where AR is the aspect ratio of the wings. Values given in table 2 show
that this ratio is close to unity for the insects. Thus the mean velocity of the wing edges during
rotation is comparable with the mean flapping velocity for more distal regions of the wing.

This dimensionless number is somewhat similar to the Rossby number Ro encountered in
flow situations combining steady rotation and linear streaming: Ro = U/w a, where U is the
free-stream velocity and a is a characteristic length. In our case the rotational and linear
velocities are both functions of time and are phase-shifted, so that the two conditions are not
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directly comparable. Lugt & Ohring (1977) numerically investigated the viscous flow around
an elliptic cylinder for Ro near unity. The flow patterns are striking and largely governed by
the vorticity shed at the ends of the cylinder, a process strongly dependent on the rotational
motion. The flow around rotating and flapping wings should be no less complicated: strong
vortex-shedding from the leading and trailing edges during rapid rotations may influence the
flow around the wing for the following half-stroke and violate the quasi-steady hypothesis (paper
Iv).

TABLE 2. MEAN NON-DIMENSIONAL ANGULAR VELOGITY OF ROTATION

(Mean values of @ during pronation and supination are given, along with the ratio of mean rotational to flapping
velocities for the wing edges. Insects from the selected film sequences are identified by their ID code from paper
II.)

species ID @/rad O/ PR
Coccinella 7-punctata LB04 14.8 0.69
Tipula obsoleta CFo02 20.6 0.88
T. paludosa CF04 17.5 0.74
Episyrphus balteatus HFO07 13.4 0.98
HFO08 13.1 1.44
(figure 10)
HF08 13.1 1.38
(figure 11)
Eristalis tenax DFo01 9.6 0.73
(figure 12)
DFO01 11.6 0.90
(figure 13)
Apis mellifera HBO1 9.6 0.64
Bombus hortorum BB04 9.6 0.70
B. lucorum BB08 9.6 0.64

(6) Profile flexion. The wing does not rotate as a flat plate during the whole of pronation
and supination; indeed, it exhibits strong changes in profile. As the wing decelerates at the end
of a half-stroke and the angle of attack increases, corresponding to the onset of rotation, the
wing untwists and any camber disappears. This indicates that rotation begins with the stiff
anterior region of the wing, which includes the wing tip. At no time have I observed the flap
or increased camber effects seen at the end of the downstroke for the locust (Jensen 1956) and
Drosophila (Vogel 1967 a). The wing continues to rotate like a flat plate until about the middle
of pronation and supination, when a reversed curvature starts to develop. This curvature is
fairly smooth and slight for the lacewing (figure 23; plates 17, 18 in Dalton 1975) and the
nemopterid Pterocroce; smooth but more pronounced for the plume moth (figure 22; figures 1, 2
in R. A. Norberg 1972a), Manduca and Ephestia; somewhat constrained to a localized flexion
for the Diptera (figures 18-20; Nachtigall 1966, 1980; plate 66 in Dalton 1977; Wootton 1981)
and the ladybird; and sharply defined for the Hymenoptera (figure 21 ; plate 24 in Dalton 1977;
Wootton 1979). The curvature, or flexion, is usually greater for supination than pronation,
and it largely disappears as the anterior wing area completes rotation and the posterior region
catches up. By the time recoil occurs at the end of pronation and supination, the wing is nearly
flat again.

This description of profile changes during rotation has been deliberately general, concen-
trating on the gross characteristics common to the insects. For a more detailed discussion of
profile and flexing the reader is referred to the papers of Wootton (1979, 1981), who has begun
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to address the functional interpretation of wing morphology. In particular, he draws attention
to the significance of flexion lines in controlling wing deformations by allowing hingewise
movements of whole areas of the wing. Two longitudinal flexion lines may act to localize
alterations in the wing profile: the median flexion line and, more posteriorly, the claval furrow.
The sharp flexing of the coupled hymenopteran wings during rotation occurs along the claval
furrow, which is located just anterior to the first anal vein on the forewing. The bending
observed for the Diptera and the ladybird appears to be somewhat confined to both flexion

D4 .

v

&

Ficure 24. (a) Wing of the hover-fly Episyrphus balteatus, showing the two functionally distinct wing areas. The stiff
anterior region is stippled. (6) The ‘flip’ motion proposed by Weis-Fogh, and the airflow it may generate. The
alula is the posterior basal area, and is not involved in the flip. Progressing from top to bottom: the wing is
initially flat; pronation causes a torsional wave in the anterior region moving towards the tip; pronation of
the anterior area is complete before it occurs in the posterior region, giving rise to the flip profile (Weis-Fogh

1973).

lines, particularly the median one. For the other insects, however, the curvature during rotation
seems quite smooth with little apparent discontinuity. This may be due to the relatively low
resolution of the cine films, or else to a more restricted freedom of the flexion lines in these insects.
Wootton (1981) also discusses the role of transverse flexion lines, which permit a ventral
bending of the wing at the beginning of the upstroke for many insects. This bending can be
seen in figure 23/ for the forewing of Chrysopa, and it was also evident on some films of the tipulids
and Hymenoptera. Again, the film resolution prevented more detailed observation.

A simplified model to explain the deformations during rotation consists of two more-or-less
distinct wing areas separated by a longitudinal flexion line: a roughly triangular anterior region
that includes the wing tip, usually stiff and reinforced by a concentration of veins, and the less
supported posterior area. This generalization of wing morphology is identical to that proposed
by Weis-Fogh (1973) for the hover-fly, shown in figure 244. For four-winged insects with
coupled wing pairs, the areas approximately correspond to the individual forewings and
hindwings. The anterior wing area always appears to lead in rotation, reducing camber at the
onset and then developing a reversed curvature in the latter half. When flexion is very
localized,this produces a sharp angular movement between the two wing areas, the ‘flip” motion
suggested by Weis-Fogﬁ for the hover-flies of the subfamily Syrphinae (figure 24 5). This motion
occurs to some extent for all of the filmed insects, as described above; the differences consist
of the degree of localization for the flexing, and how much the anterior region leads the posterior
(the angle between them). The Syrphinae, for which Weis-Fogh proposed this motion, do not
show an exceptional flip: flexion is much the same as the other Diptera, and certainly less
pronounced than the Hymenoptera.


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. B, volume 305 Ellington, plate 7
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F1curk 25. (a) A slight torsional wave moving towards the wing tip during supination of the hindwings of Chrysopa.
() The latter half of supination for Tipula obsoleta. The anterior wing area rotates first, producing a torsional
wave passing through the posterior region towards the wing base. Elastic recoil of the angle of attack is evident
at the end of supination.

(Facing p. 1)
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The flip has a double meaning, referring also to a postulated aerodynamic mechanism based
on the wing flexing. Weis-Fogh (1973) concluded that quasi-steady aerodynamics could not
explain the hovering of Syrphinae with an inclined stroke plane, and suggested that the airflow
created by the flip motion would generate a wing circulation, and hence lift, greater than the
conventional value. If this flip mechanism does explain the flight of hover-flies, then it must
also apply to other insects that have a similar flip motion. But here is the rub: Weis-Fogh
concluded in the same paper that these insects (Eristalis, Tipula and the Hymenoptera) fly
according to quasi-steady aerodynamics. This contradiction will be considered in more detail
in papers IV and VI.

(¢c) Torsional waves. With particular reference to the flip motion in hover-flies, Weis-Fogh
(1973) suggested that active rotation at the wing base results in torsional waves moving towards
the tip. On the assumption that the propagation of these waves is mediated by elastic and
inertial forces only, he calculated that their velocity through stiff cuticle is about 51 m s™1, using
the simple formula for a circular rod of material: the wave velocity is likely to be much lower,
however, when aerodynamic damping is important and the cross-section is not circular
(K. E. Machin, personal communication). The time required for Weis-Fogh’s wave to reach
the wing tip is 2-3 9, of the cycle period, and is a significant fraction of the total rotation time
for some insects. Thus the rotation of distal wing regions should lag behind more proximal ones,
a phenomenon that Weis-Fogh called ‘delayed elasticity’. (This is an unfortunate misnomer,
since the elasticity is in no sense ‘delayed’: the process is a simple torsional wave). As shown
in figure 245, Weis-Fogh proposed that the torsional deformation would propagate along the
stiff anterior wing area first. The softer posterior region should have a lower shear modulus,
which results in a slower wave speed ; its rotation would lag behind the anterior area, producing
the flip profile in the meantime. The flip motion in figure 245 shows this intermediate profile,
before the posterior area rotates significantly.

A slight torsional wave moving towards the wing tip was noticed during supination of the
hindwings of Chrysopa, and is illustrated in figure 254, plate 7. Both wing areas are relatively
soft, with a low wave velocity, and the wave seems to propagate through them at nearly the same
speed: little chordwise curvature is evident, and a sharp flip profile is absent. For the other insects,
the stiff anterior wing area rotates as a unit with no visible deformations. It must be remembered
that torsional waves result from the angular accelerations in rotation, not the angular velocity.
Deformations produced by the gradual change in the angle of attack at the beginning of
rotation must be small in amplitude, and hence do not contribute significantly to the angle
of attack at a particular spanwise station. Torsional waves could not be detected in the softer
posterior wing area either, except for the ladybird,the Diptera and the Lepidoptera. For these
insects the wave progresses towards the wing base during the latter half of rotation, which is the
opposite direction to that suggested by Weis-Fogh. This wave is seen in figure 25 4 for supination
in the crane-fly, where it is greatly pronounced. The sequence starts at about the middle of
supination: the anterior area, including the wing tip, rotates first; the posterior region then
rotates in a wave passing from tip to base; and the entire wing recoils to the angle of attack
for the following upstroke. Wootton (1981) also describes this phenomenon for tipulids and
some dragonflies (Odonata). The flexion lines separating the wing areas generally run obliquely
to the longitudinal wing axis, curving towards the trailing edge (Wootton 1981). Rotation of
the anterior wing area will generate a moment across the distal posterior region because of this,
which may explain the origin of the wave.
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3.7 Wing interference

At either end of the wingbeat, particularly the dorsal one, the left and right wings may be
in close proximity. They will influence the airflow around each other then, producing an
aerodynamic interference that may be beneficial.

3.7.1 The clap and fling

The most striking example of beneficial interference is the ‘clap and fling’ described by
Weis-Fogh (1973) for the small wasp Encarsia. At the end of the upstroke the coupled wings
rotate, their leading edges touch, and the wings clap together. The wings remain clapped for
a surprisingly long time, about 20-25 9%, of the cycle period, which may correspond to elastic
storage of the high mechanical energy needed for the subsequent ‘fling’ motion (Ellington
1975). After the clap the wings pronate with the trailing edges still in contact, and fling open
rather like a book. Weis-Fogh proposed that the airflow caused by the fling creates a circulation
around each wing, a circulation that is independent of quasi-steady considerations. This unsteady
flight mechanism enables Encarsia to generate sufficient circulatory lift even at very low
Reynolds numbers, and will be discussed in detail in paper IV.

The clap and fling occurs in all small insects that have been studied: Drosophila melanogaster
and Thrips physapus (my films), D. virilis (plate 1 in Vogel 19674) and the greenhouse white-fly
Trialeurodes vaporariorum (Weis-Fogh 1975). It is also found in some larger insects. Cooter &
Baker (1977) report it for the hindwings of Locusta migratoria in climbing flight, and it is a
prominent feature for many moths and butterflies, usually visible to the naked eye. My films
reveal a clap and fling for the Large Cabbage White butterfly Pieris brassicae (also found by
Weis-Fogh 1975), the plume moth Emmelina (figure 22) and the flour moth Ephestia. Chance
(1975) found it in the red-backed cutworm moth Euxoa ochragaster, and it is evident in still
photographs of various other Lepidoptera (figure 2.D3 in R. A. Norberg 19724; plate 21 in
Dalton 1975; plates 28 and 38 in Dalton 1977).

The prolonged clap of Encarsia is exceptional and cannot be seen in films of the other insects.
For them, the rotational motion of each wing during the clap and fling is much the same as
normal pronation. Thus the clap and fling does not involve a significant change in the basic
wingbeat pattern except for the fact that the wings meet dorsally. The longitudinal wing axes
tend to rise slightly above the stroke plane as the wings clap together, which can be seen in
figure 22 for Emmelina. This vertical movement is most pronounced for Emmelina and Puerus,
where it is equal to about 15°; for the other insects it is less than 10°. The fling commences
at the top of this vertical excursion, and there is a slight downward motion during the fling and
subsequent separation of the wings.

3.7.2. The peel

Weis-Fogh described the fling as a rigid rotation of the wing surfaces about their trailing
edges, and Lighthill (1973) analysed the fluid mechanics of this motion. The fling is more aptly
described as a peel in the Lepidoptera and Drosophila, however, and is rather like pulling two
pieces of paper apart by their leading edges. The wings are curved along their chords, and the
point of separation moves smoothly from the leading to trailing edges during the peel (figure
22b-d). The wing curvature may just be that normally observed in pronation, enhanced to
some extent by elastic deformation under the aerodynamic and inertial loads. The high
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resolution still photographs of other authors mentioned above show the peel with great clarity.
Although it may seem an almost trivial kinematic modification to the fling, the aerodynamic
implications of the peel are quite important. These will be discussed in paper IV, where it will
be shown that the peel is substantially more effective than the fling in creating a circulation
around the wings. The tiny four-winged insects probably do not perform a rigid rotation of
the entire wing surface during a fling either. These insects cannot peel apart their relatively stiff
wings, but they may do a double fling. Because the forewings led the hindwings in the cycle,
the fling should be a two-stage process: the forewings fling apart first, followed by the hindwings.
It is very difficult to verify this on the films of Encarsia and Thrips, but a few tantalizing frames
suggest that it is true. If that is the case, then the double fling may provide the small insects
with some of the benefits of the smooth peeling motion.

3.7.3. A continuous spectrum

Except for Drosophila, the small insects are the only ones that always use a complete clap
and fling. The remaining insects vary ¢, slightly during manoeuvres, often resulting in a
partial or near clap and fling. There is a continuous spectrum of motions, all based on the normal
pronation, corresponding to the distance separating the wing pairs: in the full clap and fling
the wings are momentarily in contact along the entire chord, in the partial clap and fling this
contact is restricted to a posterior region of the chord, and in the near clap and fling the wings
are close together but do not touch. The separation distance varies along the wing as a function
of the chord and the angle between the longitudinal wing axes. Thus a partial clap and fling
at the wing base can gradually change into a near clap and fling at the tip. This was the greatest
separation observed for the Lepidoptera during pronation: a partial clap and fling confined
to the most basal wing region. An intermediate motion was more commonly noted, though,
with the wings touching at least along the trailing edges for much of their length. A near clap
and fling was sometimes seen for Ephestia and Pieris during supination as well: the wings were
separated by less than 0.2 of the mean chord ¢ along most of their length. Normally the wings
were well clear of each other during supination.

Many other insects also work their way along this spectrum, although few achieve a complete
clap and fling. Some general comments will be made about the wing motion, however, before
delving into specifics. As already noted, the wing chords are parallel to each other and
perpendicular to the stroke plane at the middle of rotation. The separation between the leading
edges is smallest at this point in the cycle. As rotation continues the trailing edges come closer
together, reaching a minimum separation about two-thirds of the way through rotation, and
then move apart as the wings accelerate into the next half-stroke. The axts of rotation should
lie somewhere in the anterior half of the wing chord to generate this motion: the residual
flapping movement when the middle of rotation occurs just before the end of a half-stroke is
insufficient to explain it. Because the wings rotate in this manner, the clap is missing from a
partial clap and fling. Contact is made after the middle of rotation, when the wings are flinging
open, and is limited to more posterior areas of the chord. For the near clap and fling, we can
use the minimum distance between the trailing edges at the middle of the wing as a measure
of wing separation.

The lacewing is the most interesting example from the filmed insects, demonstrating the
greatest range with its uncoupled wing pairs. In figure 23 there is a very small gap between
the forewings in pronation, and between the hindwings in pronation and supination. (The
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forewings, however, are well apart in supination.) The separation for these motions varied on
different films: it increased to about i¢ for the near clap and fling, decreased until the trailing
edges just touched in a partial clap and fling, and anything in between. A more comprehensive
partial fling was sometimes found for the hindwings in pronation. The wing motions of the other
neuropteran Pterocroce were also quite variable. The trailing edges were usually separated by
1¢—-4¢in pronation but were well clear in supination. Unlike the lacewing, a complete dorsal clap
and fling was noted a few times. The ladybird uses a near (about {¢) to partial clap and fling
during pronation, and only a near one in supination (greater than about ¢). The tipulids also
use near (figure 18) to partial motions in pronations, with the trailing edges typically separated
by }¢—4¢, but the wings are clear in supination. The Hymenoptera do a near double fling in
pronation because of the sharp wing flexing (figure 21): ¢, is relatively constant, and the
separation is about 4¢. Finally, the wings are always well separated for Episyrphus and Eristalis.

To judge from the films, the wing separation generally seems to change with the net lift
generated: in manoeuvres demanding greater lift the wings tend to come closer together, and
vice versa. This may simply reflect control of the net lift via the stroke angle @. The difference
in ¢, between a partial and near clap and fling may be but a few degrees, however, and
the change in lift due to the altered stroke angle would be small. Perhaps the wing separation
can provide a fine control over the circulation created around the wings, and hence the amount
of lift produced. If the partial clap and fling is somewhat less effective than the complete one
in generating a circulation, and the near clap and fling even less so, then all of the insects using
these motions may rely on a variant of the unsteady fling mechanism, controlling the circulation
and net lift by subtle changes in the wing separation. This suggestion will be further investigated
in paper IV.

4. APPENDIX
Errors in the film analysis procedure

The second perspective approximation, that all projection rays from the object are parallel
to the xy plane, permits a horizontal reference plane to be defined for the insect coordinate
system, and will be discussed first. Consider the line passing through the optical centre and
the centre of the object sphere in figure 2. Points that lie in the plane defined by this line and
the horizontal line £ = £, project onto that horizontal line in the object plane, and onto the
corresponding line in the image plane. I have assumed, however, that these points lie in a true
horizontal plane perpendicular to the object and image planes: thus the assumed horizontal
plane is actually tilted by a small angle with respect to the true horizontal because of perspective.
The maximum tilt occurs at the extreme values of Z, when 7, is zero, and can be estimated
in radians by (0.34 W—1)/S. For values of 8 and 40 for W and S respectively, the maximum
tilt is only 2.5°. § was about 15 for Weis-Fogh’s (1973) films of Manduca (G. G. Runnalls,
personal communication), giving a maximum tilt of 7° for them.

Although the image wing length results from a perspective projection, the spatial angles of
the wing are reconstructed as if the image was a parallel projection. The errors introduced by
this approximation may be investigated initially by considering an object sphere located on
the optical axis. Because of the axial symmetry of perspective this case then reduces to an object
circle in the xy plane, as shown in figure 264: the distance S is greatly reduced to exaggerate
the differences between perspective and parallel projections. The wing position is defined by
the angle y between it and the line joining the centre of the sphere to S. The perspective wing
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Ficure 26. Comparison between a perspective wing tip projection $ and a parallel projection §’.
The object circle lies on the optical axis in (a), off it in (b).
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Ficure 27 The error angle ¢ arising from the parallel projection assumption, is plotted against wing position .
In (a) § = 40; in (b)) §= 15.

tip projection onto the object plane is denoted by $, and that which would be obtained by a
parallel projection is indicated by §’. The maximum projected wing length for the perspective
case f is greater than unity, which is the value # for a parallel projection. If the wing image
was actually a parallel projection, then the angle y could be calculated exactly by

y =sin7! (5 /7). (26)
Because the image wing length § and its maximum value f are the result of perspective
projections, however, the angle y,, estimated from them will be slightly incorrect:

yp = sin~! (/7). (27)
An error angle €, equal to the difference between the true angle and that estimated from the
assumption, is given by the solid lines in figures 274, b, for S equal to 40 and 15. The maximum
error occurs at the two values of y where the perspective rays are tangential to the circle and
the projected wing length is greatest, and is only 1.4° for S equal to 40 and 3.8° for the smaller
value. It may be calculated for any similar optical system by

€max = €OS™! [(S&_ 1)/5&]% (28)
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When the object circle is off the optical axis, € is not very different except for values of y
around the tangent point nearest to the x axis. The image wing length at this point is less than
the maximum  at the other tangent, as shown in figure 264. The estimated angle v, must
be double-valued at the near-tangent point, therefore, and the interval between the two values
is lost. This effect is indicated by the dashed lines in figures 274, b for the worst off-axis case,
§o =3, and it is clear that errors for small values of § can indeed be large. If the angles on
either side of the ray passing through the centre of the circle are reconstructed with the
maximum projected wing length on the corresponding side, however, the error angle is very close
to the on-axis case over the entire circle. The kinematics are only determined for one wing in
general, so the problem of treating two tangents will rarely arise.

An inherent problem of projection analysis is that the reconstructed angles are sensitive to
small measurement errors when the wing is close to maximum projection. An inaccuracy of
only 1Y%, in the measured wing length can lead to errors of + 8° when the wing is parallel to
the object plane. Fortunately, the effect is sharply peaked at maximum projection: the error
falls to & 3° for positions 10° on either side of the object plane, to less than +2° for positions
of 20°, and to less than +1° for the remaining range. It is unlikely, however, that one cine
frame will show the true maximum projection because of the limited number of frames per
wingbeat. For a reasonable filming speed, about 30 frames per wingbeat, it is probable that
one frame will show the wing within 10° of maximum projection. Apart from any measurement
inaccuracy, the error will be large for this frame if it is chosen to represent the ‘ true’ maximum
wing length. By the next frame, however, the error from using this length will fall to about
2°. Thus the problems of measurement inaccuracies and finite filming speed are very similar,
and indicate that the wing position in the frame showing the maximum observed wing length
must be regarded as unreliable. This wing length may be used as the ‘ true’ maximum projection
for other frames, though, and the error of the reconstructed angles will typically be less than 2°.

Finally, I wish to comment on the implicit assumption that the wing is rigid along its
longitudinal axis; that is, the length from base to tip must be constant for the projection analysis.
A small bending along the axis does not significantly alter this length, and changes in length
up to about 19, can be tolerated without serious errors. The only effect is that the calculated
position of the wing tip lags slightly behind more proximal wing regions. If the bending is too
large, however, the analysis is not valid. This was the case for Ephestia, where extreme bending
at the end of the downstroke and beginning of the upstroke caused the distance from wing base
to tip to decrease by about 4 9.

I am grateful to Mr G. G. Runnalls, whose expertise in high-speed cinematography made
this work possible. I also thank Mr D. J. Tyler for building the digitizer, Professor G. K. Batchelor
for laboratory space and computing facilities in the Department of Applied Mathematics and
Theoretical Physics, Mr J. H. Davidson for computing assistance, and Dr K. E. Machin for
discussions and comments on the manuscript. The Winston Churchill Foundation and the
Science and Engineering Research Council provided financial support.
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Ficure 18. The sequence for the crane-fly Tipula obsoleta, used in figure 7. Alternate frames are shown.
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TGURE 19. The sequence for the hover-fly Episyrphus balteatus, used in figure 9. Alternate frames are shown.
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IGURE 20. The sequence for the drone-fly Eristalis tenax, used in figure 12. Alternative frames are shown.
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The sequence for the bumble bee Bombus lucorum, used in figure 16.
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sF1IGURE 22. The wingbeat of the plume moth (PMO1) Emmelina monodactylus in decelerating forward flight. Kinematic
parameters: V=142 £= —3° 9=12° f=9° ¥ =59° @ =168° ¢ =13° n=329 Hz, d/u=1.42.

Alternate frames are shown.
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Ficure 23. The wingbeat of the lacewing (LWO2) Chrysopa carnea in a nearly vertical climb. Kinematic parameters:
V= 1.2, £ nearly vertical, y = —15°% ¥ estimated to be 60° n = 28.2 Hz. Forewings: f = 14°, @ = 149°
¢ = 18° d/u = 1.17. Hindwings: f = 2°, @ = 165°, ¢ = 4°, d/u = 0.91. The phase relation between forewings
and hindwings changes during the cycle, with the forewings leading by 0.18 of the period at pronation but

0.12 at supination. Every fourth frame is shown.
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IGURE 25. (a) A slight torsional wave moving towards the wing tip during supination of the hindwings of Chrysopa.
(6) The latter half of supination for Tipula obsoleta. The anterior wing area rotates first, producing a torsional

wave passing through the posterior region towards the wing base. Elastic recoil of the angle of attack is evident
at the end of supination.
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